1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
//! The borrowck rules for proving disjointness are applied from the "root" of the
//! borrow forwards, iterating over "similar" projections in lockstep until
//! we can prove overlap one way or another. Essentially, we treat `Overlap` as
//! a monoid and report a conflict if the product ends up not being `Disjoint`.
//!
//! At each step, if we didn't run out of borrow or place, we know that our elements
//! have the same type, and that they only overlap if they are the identical.
//!
//! For example, if we are comparing these:
//! ```text
//! BORROW:  (*x1[2].y).z.a
//! ACCESS:  (*x1[i].y).w.b
//! ```
//!
//! Then our steps are:
//! ```text
//!       x1         |   x1          -- places are the same
//!       x1[2]      |   x1[i]       -- equal or disjoint (disjoint if indexes differ)
//!       x1[2].y    |   x1[i].y     -- equal or disjoint
//!      *x1[2].y    |  *x1[i].y     -- equal or disjoint
//!     (*x1[2].y).z | (*x1[i].y).w  -- we are disjoint and don't need to check more!
//! ```
//!
//! Because `zip` does potentially bad things to the iterator inside, this loop
//! also handles the case where the access might be a *prefix* of the borrow, e.g.
//!
//! ```text
//! BORROW:  (*x1[2].y).z.a
//! ACCESS:  x1[i].y
//! ```
//!
//! Then our steps are:
//! ```text
//!       x1         |   x1          -- places are the same
//!       x1[2]      |   x1[i]       -- equal or disjoint (disjoint if indexes differ)
//!       x1[2].y    |   x1[i].y     -- equal or disjoint
//! ```
//!
//! -- here we run out of access - the borrow can access a part of it. If this
//! is a full deep access, then we *know* the borrow conflicts with it. However,
//! if the access is shallow, then we can proceed:
//!
//! ```text
//!       x1[2].y    | (*x1[i].y)    -- a deref! the access can't get past this, so we
//!                                     are disjoint
//! ```
//!
//! Our invariant is, that at each step of the iteration:
//!  - If we didn't run out of access to match, our borrow and access are comparable
//!    and either equal or disjoint.
//!  - If we did run out of access, the borrow can access a part of it.

use crate::ArtificialField;
use crate::Overlap;
use crate::{AccessDepth, Deep, Shallow};
use rustc_hir as hir;
use rustc_middle::mir::{
    Body, BorrowKind, MutBorrowKind, Place, PlaceElem, PlaceRef, ProjectionElem,
};
use rustc_middle::ty::{self, TyCtxt};
use std::cmp::max;
use std::iter;

/// When checking if a place conflicts with another place, this enum is used to influence decisions
/// where a place might be equal or disjoint with another place, such as if `a[i] == a[j]`.
/// `PlaceConflictBias::Overlap` would bias toward assuming that `i` might equal `j` and that these
/// places overlap. `PlaceConflictBias::NoOverlap` assumes that for the purposes of the predicate
/// being run in the calling context, the conservative choice is to assume the compared indices
/// are disjoint (and therefore, do not overlap).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum PlaceConflictBias {
    Overlap,
    NoOverlap,
}

/// Helper function for checking if places conflict with a mutable borrow and deep access depth.
/// This is used to check for places conflicting outside of the borrow checking code (such as in
/// dataflow).
pub fn places_conflict<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &Body<'tcx>,
    borrow_place: Place<'tcx>,
    access_place: Place<'tcx>,
    bias: PlaceConflictBias,
) -> bool {
    borrow_conflicts_with_place(
        tcx,
        body,
        borrow_place,
        BorrowKind::Mut { kind: MutBorrowKind::TwoPhaseBorrow },
        access_place.as_ref(),
        AccessDepth::Deep,
        bias,
    )
}

/// Checks whether the `borrow_place` conflicts with the `access_place` given a borrow kind and
/// access depth. The `bias` parameter is used to determine how the unknowable (comparing runtime
/// array indices, for example) should be interpreted - this depends on what the caller wants in
/// order to make the conservative choice and preserve soundness.
#[inline]
pub(super) fn borrow_conflicts_with_place<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &Body<'tcx>,
    borrow_place: Place<'tcx>,
    borrow_kind: BorrowKind,
    access_place: PlaceRef<'tcx>,
    access: AccessDepth,
    bias: PlaceConflictBias,
) -> bool {
    let borrow_local = borrow_place.local;
    let access_local = access_place.local;

    if borrow_local != access_local {
        // We have proven the borrow disjoint - further projections will remain disjoint.
        return false;
    }

    // This Local/Local case is handled by the more general code below, but
    // it's so common that it's a speed win to check for it first.
    if borrow_place.projection.is_empty() && access_place.projection.is_empty() {
        return true;
    }

    place_components_conflict(tcx, body, borrow_place, borrow_kind, access_place, access, bias)
}

#[instrument(level = "debug", skip(tcx, body))]
fn place_components_conflict<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &Body<'tcx>,
    borrow_place: Place<'tcx>,
    borrow_kind: BorrowKind,
    access_place: PlaceRef<'tcx>,
    access: AccessDepth,
    bias: PlaceConflictBias,
) -> bool {
    let borrow_local = borrow_place.local;
    let access_local = access_place.local;
    // borrow_conflicts_with_place should have checked that.
    assert_eq!(borrow_local, access_local);

    // loop invariant: borrow_c is always either equal to access_c or disjoint from it.
    for ((borrow_place, borrow_c), &access_c) in
        iter::zip(borrow_place.iter_projections(), access_place.projection)
    {
        debug!(?borrow_c, ?access_c);

        // Borrow and access path both have more components.
        //
        // Examples:
        //
        // - borrow of `a.(...)`, access to `a.(...)`
        // - borrow of `a.(...)`, access to `b.(...)`
        //
        // Here we only see the components we have checked so
        // far (in our examples, just the first component). We
        // check whether the components being borrowed vs
        // accessed are disjoint (as in the second example,
        // but not the first).
        match place_projection_conflict(tcx, body, borrow_place, borrow_c, access_c, bias) {
            Overlap::Arbitrary => {
                // We have encountered different fields of potentially
                // the same union - the borrow now partially overlaps.
                //
                // There is no *easy* way of comparing the fields
                // further on, because they might have different types
                // (e.g., borrows of `u.a.0` and `u.b.y` where `.0` and
                // `.y` come from different structs).
                //
                // We could try to do some things here - e.g., count
                // dereferences - but that's probably not a good
                // idea, at least for now, so just give up and
                // report a conflict. This is unsafe code anyway so
                // the user could always use raw pointers.
                debug!("arbitrary -> conflict");
                return true;
            }
            Overlap::EqualOrDisjoint => {
                // This is the recursive case - proceed to the next element.
            }
            Overlap::Disjoint => {
                // We have proven the borrow disjoint - further
                // projections will remain disjoint.
                debug!("disjoint");
                return false;
            }
        }
    }

    if borrow_place.projection.len() > access_place.projection.len() {
        for (base, elem) in borrow_place.iter_projections().skip(access_place.projection.len()) {
            // Borrow path is longer than the access path. Examples:
            //
            // - borrow of `a.b.c`, access to `a.b`
            //
            // Here, we know that the borrow can access a part of
            // our place. This is a conflict if that is a part our
            // access cares about.

            let base_ty = base.ty(body, tcx).ty;

            match (elem, &base_ty.kind(), access) {
                (_, _, Shallow(Some(ArtificialField::ArrayLength)))
                | (_, _, Shallow(Some(ArtificialField::FakeBorrow))) => {
                    // The array length is like additional fields on the
                    // type; it does not overlap any existing data there.
                    // Furthermore, if cannot actually be a prefix of any
                    // borrowed place (at least in MIR as it is currently.)
                    //
                    // e.g., a (mutable) borrow of `a[5]` while we read the
                    // array length of `a`.
                    debug!("borrow_conflicts_with_place: implicit field");
                    return false;
                }

                (ProjectionElem::Deref, _, Shallow(None)) => {
                    // e.g., a borrow of `*x.y` while we shallowly access `x.y` or some
                    // prefix thereof - the shallow access can't touch anything behind
                    // the pointer.
                    debug!("borrow_conflicts_with_place: shallow access behind ptr");
                    return false;
                }
                (ProjectionElem::Deref, ty::Ref(_, _, hir::Mutability::Not), _) => {
                    // Shouldn't be tracked
                    bug!("Tracking borrow behind shared reference.");
                }
                (ProjectionElem::Deref, ty::Ref(_, _, hir::Mutability::Mut), AccessDepth::Drop) => {
                    // Values behind a mutable reference are not access either by dropping a
                    // value, or by StorageDead
                    debug!("borrow_conflicts_with_place: drop access behind ptr");
                    return false;
                }

                (ProjectionElem::Field { .. }, ty::Adt(def, _), AccessDepth::Drop) => {
                    // Drop can read/write arbitrary projections, so places
                    // conflict regardless of further projections.
                    if def.has_dtor(tcx) {
                        return true;
                    }
                }

                (ProjectionElem::Deref, _, Deep)
                | (ProjectionElem::Deref, _, AccessDepth::Drop)
                | (ProjectionElem::Field { .. }, _, _)
                | (ProjectionElem::Index { .. }, _, _)
                | (ProjectionElem::ConstantIndex { .. }, _, _)
                | (ProjectionElem::Subslice { .. }, _, _)
                | (ProjectionElem::OpaqueCast { .. }, _, _)
                | (ProjectionElem::Subtype(_), _, _)
                | (ProjectionElem::Downcast { .. }, _, _) => {
                    // Recursive case. This can still be disjoint on a
                    // further iteration if this a shallow access and
                    // there's a deref later on, e.g., a borrow
                    // of `*x.y` while accessing `x`.
                }
            }
        }
    }

    // Borrow path ran out but access path may not
    // have. Examples:
    //
    // - borrow of `a.b`, access to `a.b.c`
    // - borrow of `a.b`, access to `a.b`
    //
    // In the first example, where we didn't run out of
    // access, the borrow can access all of our place, so we
    // have a conflict.
    //
    // If the second example, where we did, then we still know
    // that the borrow can access a *part* of our place that
    // our access cares about, so we still have a conflict.
    if borrow_kind == BorrowKind::Fake
        && borrow_place.projection.len() < access_place.projection.len()
    {
        debug!("borrow_conflicts_with_place: fake borrow");
        false
    } else {
        debug!("borrow_conflicts_with_place: full borrow, CONFLICT");
        true
    }
}

// Given that the bases of `elem1` and `elem2` are always either equal
// or disjoint (and have the same type!), return the overlap situation
// between `elem1` and `elem2`.
fn place_projection_conflict<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &Body<'tcx>,
    pi1: PlaceRef<'tcx>,
    pi1_elem: PlaceElem<'tcx>,
    pi2_elem: PlaceElem<'tcx>,
    bias: PlaceConflictBias,
) -> Overlap {
    match (pi1_elem, pi2_elem) {
        (ProjectionElem::Deref, ProjectionElem::Deref) => {
            // derefs (e.g., `*x` vs. `*x`) - recur.
            debug!("place_element_conflict: DISJOINT-OR-EQ-DEREF");
            Overlap::EqualOrDisjoint
        }
        (ProjectionElem::OpaqueCast(_), ProjectionElem::OpaqueCast(_)) => {
            // casts to other types may always conflict irrespective of the type being cast to.
            debug!("place_element_conflict: DISJOINT-OR-EQ-OPAQUE");
            Overlap::EqualOrDisjoint
        }
        (ProjectionElem::Field(f1, _), ProjectionElem::Field(f2, _)) => {
            if f1 == f2 {
                // same field (e.g., `a.y` vs. `a.y`) - recur.
                debug!("place_element_conflict: DISJOINT-OR-EQ-FIELD");
                Overlap::EqualOrDisjoint
            } else {
                let ty = pi1.ty(body, tcx).ty;
                if ty.is_union() {
                    // Different fields of a union, we are basically stuck.
                    debug!("place_element_conflict: STUCK-UNION");
                    Overlap::Arbitrary
                } else {
                    // Different fields of a struct (`a.x` vs. `a.y`). Disjoint!
                    debug!("place_element_conflict: DISJOINT-FIELD");
                    Overlap::Disjoint
                }
            }
        }
        (ProjectionElem::Downcast(_, v1), ProjectionElem::Downcast(_, v2)) => {
            // different variants are treated as having disjoint fields,
            // even if they occupy the same "space", because it's
            // impossible for 2 variants of the same enum to exist
            // (and therefore, to be borrowed) at the same time.
            //
            // Note that this is different from unions - we *do* allow
            // this code to compile:
            //
            // ```
            // fn foo(x: &mut Result<i32, i32>) {
            //     let mut v = None;
            //     if let Ok(ref mut a) = *x {
            //         v = Some(a);
            //     }
            //     // here, you would *think* that the
            //     // *entirety* of `x` would be borrowed,
            //     // but in fact only the `Ok` variant is,
            //     // so the `Err` variant is *entirely free*:
            //     if let Err(ref mut a) = *x {
            //         v = Some(a);
            //     }
            //     drop(v);
            // }
            // ```
            if v1 == v2 {
                debug!("place_element_conflict: DISJOINT-OR-EQ-FIELD");
                Overlap::EqualOrDisjoint
            } else {
                debug!("place_element_conflict: DISJOINT-FIELD");
                Overlap::Disjoint
            }
        }
        (
            ProjectionElem::Index(..),
            ProjectionElem::Index(..)
            | ProjectionElem::ConstantIndex { .. }
            | ProjectionElem::Subslice { .. },
        )
        | (
            ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. },
            ProjectionElem::Index(..),
        ) => {
            // Array indexes (`a[0]` vs. `a[i]`). These can either be disjoint
            // (if the indexes differ) or equal (if they are the same).
            match bias {
                PlaceConflictBias::Overlap => {
                    // If we are biased towards overlapping, then this is the recursive
                    // case that gives "equal *or* disjoint" its meaning.
                    debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-INDEX");
                    Overlap::EqualOrDisjoint
                }
                PlaceConflictBias::NoOverlap => {
                    // If we are biased towards no overlapping, then this is disjoint.
                    debug!("place_element_conflict: DISJOINT-ARRAY-INDEX");
                    Overlap::Disjoint
                }
            }
        }
        (
            ProjectionElem::ConstantIndex { offset: o1, min_length: _, from_end: false },
            ProjectionElem::ConstantIndex { offset: o2, min_length: _, from_end: false },
        )
        | (
            ProjectionElem::ConstantIndex { offset: o1, min_length: _, from_end: true },
            ProjectionElem::ConstantIndex { offset: o2, min_length: _, from_end: true },
        ) => {
            if o1 == o2 {
                debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-CONSTANT-INDEX");
                Overlap::EqualOrDisjoint
            } else {
                debug!("place_element_conflict: DISJOINT-ARRAY-CONSTANT-INDEX");
                Overlap::Disjoint
            }
        }
        (
            ProjectionElem::ConstantIndex {
                offset: offset_from_begin,
                min_length: min_length1,
                from_end: false,
            },
            ProjectionElem::ConstantIndex {
                offset: offset_from_end,
                min_length: min_length2,
                from_end: true,
            },
        )
        | (
            ProjectionElem::ConstantIndex {
                offset: offset_from_end,
                min_length: min_length1,
                from_end: true,
            },
            ProjectionElem::ConstantIndex {
                offset: offset_from_begin,
                min_length: min_length2,
                from_end: false,
            },
        ) => {
            // both patterns matched so it must be at least the greater of the two
            let min_length = max(min_length1, min_length2);
            // `offset_from_end` can be in range `[1..min_length]`, 1 indicates the last
            // element (like -1 in Python) and `min_length` the first.
            // Therefore, `min_length - offset_from_end` gives the minimal possible
            // offset from the beginning
            if offset_from_begin >= min_length - offset_from_end {
                debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-CONSTANT-INDEX-FE");
                Overlap::EqualOrDisjoint
            } else {
                debug!("place_element_conflict: DISJOINT-ARRAY-CONSTANT-INDEX-FE");
                Overlap::Disjoint
            }
        }
        (
            ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
            ProjectionElem::Subslice { from, to, from_end: false },
        )
        | (
            ProjectionElem::Subslice { from, to, from_end: false },
            ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
        ) => {
            if (from..to).contains(&offset) {
                debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-CONSTANT-INDEX-SUBSLICE");
                Overlap::EqualOrDisjoint
            } else {
                debug!("place_element_conflict: DISJOINT-ARRAY-CONSTANT-INDEX-SUBSLICE");
                Overlap::Disjoint
            }
        }
        (
            ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
            ProjectionElem::Subslice { from, .. },
        )
        | (
            ProjectionElem::Subslice { from, .. },
            ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
        ) => {
            if offset >= from {
                debug!("place_element_conflict: DISJOINT-OR-EQ-SLICE-CONSTANT-INDEX-SUBSLICE");
                Overlap::EqualOrDisjoint
            } else {
                debug!("place_element_conflict: DISJOINT-SLICE-CONSTANT-INDEX-SUBSLICE");
                Overlap::Disjoint
            }
        }
        (
            ProjectionElem::ConstantIndex { offset, min_length: _, from_end: true },
            ProjectionElem::Subslice { to, from_end: true, .. },
        )
        | (
            ProjectionElem::Subslice { to, from_end: true, .. },
            ProjectionElem::ConstantIndex { offset, min_length: _, from_end: true },
        ) => {
            if offset > to {
                debug!(
                    "place_element_conflict: \
                       DISJOINT-OR-EQ-SLICE-CONSTANT-INDEX-SUBSLICE-FE"
                );
                Overlap::EqualOrDisjoint
            } else {
                debug!("place_element_conflict: DISJOINT-SLICE-CONSTANT-INDEX-SUBSLICE-FE");
                Overlap::Disjoint
            }
        }
        (
            ProjectionElem::Subslice { from: f1, to: t1, from_end: false },
            ProjectionElem::Subslice { from: f2, to: t2, from_end: false },
        ) => {
            if f2 >= t1 || f1 >= t2 {
                debug!("place_element_conflict: DISJOINT-ARRAY-SUBSLICES");
                Overlap::Disjoint
            } else {
                debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-SUBSLICES");
                Overlap::EqualOrDisjoint
            }
        }
        (ProjectionElem::Subslice { .. }, ProjectionElem::Subslice { .. }) => {
            debug!("place_element_conflict: DISJOINT-OR-EQ-SLICE-SUBSLICES");
            Overlap::EqualOrDisjoint
        }
        (
            ProjectionElem::Deref
            | ProjectionElem::Field(..)
            | ProjectionElem::Index(..)
            | ProjectionElem::ConstantIndex { .. }
            | ProjectionElem::Subtype(_)
            | ProjectionElem::OpaqueCast { .. }
            | ProjectionElem::Subslice { .. }
            | ProjectionElem::Downcast(..),
            _,
        ) => bug!(
            "mismatched projections in place_element_conflict: {:?} and {:?}",
            pi1_elem,
            pi2_elem
        ),
    }
}